The Automated Satellite Data Processing System

MODIS Processing

The Automated Satel Published 28 March 2008	lite Data	Processi	ng Syste	m: MODIS	S Processing

Table of Contents

1. Introduction	
MODIS Reception	
2. MODIS Processing	
Sensor Response	
Rayleigh/Aerosol tables	
Sensor Tables	
Atmospheric Corrections	
3. Products	
MODIS Top-of-Atmosphere Products	4
MODIS Atmospheric Correction Products	
MODIS Water Products	
MODIS Geometery Products	6
MODIS Ancillary Data Properties	
MODIS Chlorophil-a Products	
MODIS Apparent Optical Properties	
MODIS IOP Products	9
MODIS Water Mass ClassificationProducts	
MODIS Sea Surface Temperature Properties	
MODIS Land Properties	

List of Figures	List	of	Fig	ures
-----------------	------	----	-----	------

Chapter 1. Introduction

MODIS is a MODerate resolution Imaging System on board the NASA's Terra and Aqua satellites. It is a whisk-broom type sensor that includes multiple resolutions (250m, 500m, and 1000m) and 36 bands that cover the visible, near-, short-, and long-infrared regions. This large coverage provides the simulatenous measurement of ocean color and sea surface temperatures.

MODIS Reception

MODIS is collected by the NASA.

Chapter 2. MODIS Processing

The MODIS instrument has a very similar spectral suite as other ocean color satellites (as well as other temperature data). Therefore, it is processed using the same general methods described in the ocolor color processing documentation. This chapter will only discuss the deviations from general processing specific to MODIS.

Sensor Response

The SeaWiFS instrument consists of an optical scanner and an electronics module. Below is a listing of the central wavelengths and bandwidths for SeaWiFS.

Figure 2.1.

Rayleigh/Aerosol tables

These tables are provided in the data/modis[a,t]/rayleigh and data/modis[a,t]/aerosol directories. The Rayleigh tables are given for each band. The aerosol tables are generated based on the model selections. These tables were derived by NASA.

Sensor Tables

The sensor table data/modis[t,a]/msl12_sensor_info.dat contains values specific to the MODIS sensor. These include the values for F0, tau_r, water absorption and backscattering terms. For MODIS, these values were generated by convolving high-spectral resolution inputs.

For the F0, the data/common/ThuillerF0.dat file provides the solar irradiance spectra at 1nm. The convolution of that data with the spectral response provided the values given for F0 in the table in the sensor table above.

Likewise, the Rayleigh optical thickness values were generated from the data/common/taur.txt. The water absorption values were convolved from the data/common/water_spectra.dat table. And the ozone absorption coefficient values were generated from data/common/Nickolet_o3_abs.txt.

Atmospheric Corrections

The vicarious calibration gains and offsets for MODIS were derived from NASA.

The out-of-band correction is applied to the MODIS data. The correction was derived from NASA.

The BRDF correction used by MODIS is identical to all the other sensors processed by l2gen.

Chapter 3. Products MODIS Top-of-Atmosphere Products

The MODIS Top-of-Atmosphere products include the atmospheric properties of the total radiance at the sensor.

Product	Description
Lt_nnn	calibrated TOA
	radiance at <i>nnn</i>
I tir non	nm calibrated TOA
Ltir_nnn	radiance at <i>nnn</i>
	nm
rhot nnn	TOA reflectance
	at <i>nnn</i> nm
TLg_nnn	TOA glint
	radiance at nnn
	nm
glint_coeff	glint radiance
	normalized by
tLf nnn	solar irradiance
ıLı_nnn	foam (white-cap) radiance at nnn
	nm
Lr nnn	Rayleigh radiance
	at <i>nnn</i> nm
L_q_nnn	polarization
	radiance at nnn
_	nm, q-component
L_u_ <i>nnn</i>	polarization
	radiance at <i>nnn</i>
polcor_nnn	nm, u-component polarization
poleoi_mm	correction at <i>nnn</i>
	nm
t_sol_nnn	Rayleigh-aerosol
	transmittance,sun
	to ground at nnn
	nm
t_sen_nnn	Rayleigh-aerosol
	transmit-
	tance,ground to sensor at <i>nnn</i> nm
t oz sol <i>nnn</i>	ozone
	transmittance,sun
	to ground at nnn
	nm
t_oz_sen_nnn	ozone transmit-
	tance, ground to
t a2	sensor at <i>nnn</i> nm
t_o2_ <i>nnn</i>	total oxygen transmittance at
	nnn nm
t h2onnn	total water vaport
_	transmittance at
	<i>nnn</i> nm
taua_nnn	aerosol optical
	depth at <i>nnn</i> nm
tau_nnn	same as taua_nnn
brdf_nnn	BRDF coefficient
La <i>nnn</i>	at <i>nnn</i> nm aerosol radiance 5
_a_mm	at <i>nnn</i> nm
Es_nnn	extra-terestrial
_	surface irradiance
	at <i>nnn</i> nm
1 1 11 1	1 1 11 1

MODIS Atmospheric Correction Products

Geometery Products

La_nnn aerosol radiance

at *nnn* nm

aerindex aerosol index aer_model_min minimum

bounding aerosol

model #

aer_model_max maximum

bounding aerosol

model#

aer_model_ratio model mixing

ratio

aer_num_iter number of

aerosol iterations, NIR correction

epsilon retreived epsilon

used for model

selection

eps_78 same as epsilon

angstrom_nnn aerosol angstrom

coefficents (nnn.865) nm

eps_nnn_lll ratio of nnn to lll

single-scattering

aerosol radiances

rhom_nnn water + aeorsol

reflectance at *nnn* nm (MUMM)

MODIS Water Products

Geometery Products

rrs_nnn remote sensing

reflectance at nnn

nm

nLw_nnn normalized

water-leaving radiance at *nnn*

nm

Lw_nnn water-leaving

radiance at nnn

nm

rhos_nnn surface

reflectance at nnn

nm

MODIS Geometery Products

Geometery Products

Product Description
pixnum pixel number
detnum detector number
mside mirror side
latitudes (-90.0 to

90.0)

longitudes longitudes

(-180.0 to 180.0)

solz solar zenith angle sola solar azimuth

angle

senz satellite zenith

angle

sena satellite azimuth

angle

MODIS Ancillary Data Properties

The following apparent optical properties

Product Description windspeed magnitude of

wind at 10 meters

zwind zonal wind speed

at 10 meters

mwind meridional wind

speed at 10

meters

windangle wind direction at

10 meters

water_vapor precipital water

concentration

humidity relative humidity

pressure barometric

pressure

ozone ozone

concentration

no2_tropo tropospheric NO2

no2_strat stratospheric

NO₂

MODIS Chlorophll-a Products

The chlorophyll-a product for MODIS uses the same general formula for chlorophyll-a calculations. However, due to the configuration of band spectra (no 510 nm channel), the algorithm is a 3-band ratio as opposed to the normal 4-band algorithm of other ocean color satelittes.

Product Description chl_oc2 chlorophyll-a concentration using OC2 algorithm chl_oc3 chlorophyll-a concentration using OC3 algorithm chl_oc4 chlorophyll-a concentration using OC4 algorithm chlor_a chlorophyll-a concentration using sensor-specific default chl_stumpf chlorophyll-a concentration using Stumpf's algorithm chl_carder chlorophyll-a concentration using Carder's algorithm

MODIS Apparent Optical Properties

The following apparent optical properties

Product Description Kd 532 diffuse

attenuation at 532

nm using 490/555

ratio

K_length_532 diffuse

attenuation at 532 nm using 443/555

ratio

Kd_nnn_lee diffuse

attenuation at *nnn* nm using Lee algorithm diffuse

Kd_490_morel diffe

attenuation at 490 nm using Morel

Eq8

 $Kd_490_morel_ok2$ ffuse

attenuation at 490 nm using Morel

OK2

Kd_490_mueller diffuse

attenuation at 490 nm using Mueller

Kd_490_obpg diffuse

attenuation at 490 nm using OBPG

Kd_PAR_morel diffuse

attenuation (PAR) using Morel algorithm (1st optical depth)

Kd_PAR_lee diffuse

attenuation (PAR) using Lee

algorithm (1st optical depth)

MODIS IOP Products

For the QAA product suite, the MODIS sensor has a 645 nm channel which is near the required 640 nm used to estimate the absorption at 555nm. The coefficients for xxx are uniquely derived.

qaa_opt

A value of 1 (the default) indicates the use of the modeled 640nm channel,

qaa_adg_s

Define the spectral slope parameter, s, to use in the QAA algorithm. Default is 0.015.

qaa_wave

The sensor specific wavelengths for QAA. For MODIS, these are defined as [412,443,488,551,-

1].

Product	Description
a_nnn_carder	total absorption at nnn nm using
	Carder algorithm
aph_nnn_carder	phytoplankton
1 – –	absorption at <i>nnn</i>
	nm using Carder
	algorithm
adg_nnn_carder	detris/gelbstuff
	absorption at nnn
	nm using Carder
	algorithm
bb_nnn_carder	backscatter at nnn
	nm using Carder
	algorithm
b_ <i>nnn</i> _carder	total scattering at
	nnn nm using
,	Carder algorithm
c_nnn_carder	beam attenuation
	at <i>nnn</i> nm using
0.1	Carder algorithm
a_nnn_gsm01	total absorption at
	nnn nm using GSM01
	algorithm
aph_nnn_gsm01	phytoplankton
apii_niii_gsiii01	absorption at <i>nnn</i>
	nm using GSM01
	algorithm
adg_nnn_gsm01	detris/gelbstuff
### Sollio 1	absorption at <i>nnn</i>
	nm using GSM01
	algorithm
bb_nnn_gsm01	backscatter at nnn
_	nm using GSM01
	algorithm
b_nnn_gsm01	total scattering at
	nnn nm using
	GSM01
	algorithm
c_nnn_gsm01	beam attenuation
	at <i>nnn</i> nm using
	GSM01
	algorithm
a_ <i>nnn</i> _qaa	total absorption at
	nnn nm using
a nh aaa	QAA algorithm
aph_ <i>nnn</i> _qaa	phytoplankton absorption at <i>nnn</i>
	nm using QAA
	algorithm
adg_nnn_qaa	detris/gelbstuff
	absorption at <i>nnn</i>
	nm using QAA
	algorithm
bb_ <i>nnn</i> _qaa	backscatter at nnn
1	nm using QAA
	algorithm
b_ <i>nnn</i> _qaa	total scattering at
-	nnn nm using
	0 1

MODIS Water Mass Classification Products

Water Mass

wmass water mass

classification using Gould algorithm

water_mass water mass

classification image using Gould algorithm

PIM_gould particulate

inorganic matter using Gould

algorithm

POM_gould particulate

organic matter using Gould algorithm

TSS_gould total suspened

particles using Gould algorithm

aph_412_gould phytoplankton

absorption at 412 nm using Gould

algorithm

asd_412_gould sediment and

detrital

absorption at 412 nm using Gould algorithm sediment and

detrital

absorption at 412 nm using Gould

algorithm

ag_412_gould gelbstuff

asd_412_gould

absorption at 412 nm using Gould algorithm

ap_412_gould particulate

absorption at 412 nm using Gould algorithm

as_412_gould sediment

absorption at 412 nm using Gould algorithm

MODIS Sea Surface Temperature Properties

The following land properties

Product Description sea surface sst temperature sea surface sst4 temperature

(4um)

quality indicator $qual_sst$

of sst

 $qual_sst4$ quality indicator

of sst4

MODIS Land Properties

The following land properties

Product Description normalized ndvi

difference

vegetation index

enhanced evi

vegetation index

smoke smoke index height terrain height

Name

modArea -- determine file extents of geographical area

modArea

modArea [-M mapFile] mapName inFile

Description

Determine the file extents (start/stop pixel/line) of a MODIS Level-1B file (still in sensor projection, etc.) that covers a map using the geolocation data in the file. It can handle the MOD03 or any of the MOD02 files.

ModArea begins by reading in the map from the mapFile. If the file can not be opened or the named map is not in the file, a diagnostic is printed and the program will exit.

Next, the input file is opened and the navigation information initialized. If unable to open the MODIS file or retrieve the navigation information from it, the program will print a diagnostic and exit.

Once the navigation has been set, **modArea** reads every point to determine if that point falls within the desired map. From this, the smallest box that will cover the box will be determined. These file extents will be printed to the screen. If none of the latitude/longitude pairs fall in the map, then the message "No coverage" will be printed. If the file extents are the original input file, then the message will be "Complete coverage."

In addition "No Water Coverage" is output if file does not cover any water pixels in the map.

Options

-a	Reduce data file extents by given sensor zenith angle.
-d	Debug output.
-h	Treat output (sample/lines*2) as HKM for MOD03 file.
-1	Don't output start/stop line locations.
-m percent	Set a minimum coverage that the input data must cover the region of interest. Default value is 0.
-M mapFile	Use the given map file to find mapName. Defaults to \$APS_DATA/maps.hdf.
-p	Don't output start/stop pixel locations.
-q	Treat output (sample/lines*4) as QKM for MOD03 file.

-v

Make output verbose.

--help

Print out help and exit.

--version

Print out version and exit.

Environmental Variables

APS_DATA

The location of the APS data directory. Used to determine location of the default map file.

Examples

The first line shows what happens when then environment variable is not set. If not set, user must use -M to define location, unless the default file is in the current directory. The last shows the normal behavior.

```
$ modArea GulfOfMexico MOD021KM.P2003134.1140.NOAA
Map (GulfOfMexico) does not exist in file (maps.hdf).
$ modArea -M ~/aps_v3.1/data/maps.hdf GulfOfMexico MOD021KM.P2003134.1140.NOAA
unable open landmask file, not checking water coverage
No coverage
$ export APS_DATA=~/aps_v3.1/data
$ modArea GulfOfMexico MOD021KM.P2003134.1140.NOAA
No coverage
```

The next examples shows examples of regions that cover and do not cover the given regions of interest. It also shows examples of running the code on different inputs files.

```
$ modArea MissBight MOD03.A2002031.1535.003.2002034024442.hdf
No coverage
$ modArea PersianGulf MOD021KM.A2003133.0745.NOAA
747 1354 2 1157
$ modArea PersianGulf MOD03.A2003133.0745.NOAA
742 1354 1 1149
$ modArea PersianGulf MOD02HKM.A2003133.0745.NOAA
1484 2708 1 2298
$ modArea -h PersianGulf MOD03.A2003133.0745.NOAA
1484 2708 1 2298
$ modArea PersianGulf MOD03.A2003133.0745.NOAA
2968 5416 1 4596
$ modArea -q PersianGulf MOD03.A2003133.0745.NOAA
2968 5416 1 4596
```

These examples show a file that is completely over land, and how changing the angle reduces the coverage of the data.

```
$ modArea PersianGulf MOD02HKM.A2003129.0805.NOAA
2350 2708 3634 4042 No Water Coverage
$ modArea ArabianSea MOD03.A2003133.0745.NOAA
678 1354 508 2030
$ modArea -a 60 ArabianSea MOD03.A2003133.0745.NOAA
678 1310 557 2030
$ modArea -a 55 ArabianSea MOD03.A2003133.0745.NOAA
678 1264 594 2030
```

As the angle is reduced, the percent coverage of the region of interest is also reduced. So, as you can see if we set a minimum amount of coverage, we eventually get "No Coverage".

```
$ modArea -m 15 -a 55 MOD03.A2003133.0745.NOAA
678 1264 594 2030
$ modArea -m 15 -a 50 MOD03.A2003133.0745.NOAA
No coverage
```

If a problem is suspected, then use the -v (verbose) option to output more information.

```
$ modArea -v GulfOfMexico MOD03.A2002031.1535.003.2002034024442.hdf
Using Default MapFile ($APS_DATA/maps.hdf)
Initializing Map GulfOfMexico (From File /home/martinol/aps_v3.1/data/maps.hdf)
Reading Navigation Data MOD03.A2002031.1535.003.2002034024442.hdf ... done
Projecting Navigation Data to GulfOfMexico ... done
Scaning Navigation for file limits ... done
Percent Coverage/Miniumum = 0.04747047/0
limits of input file
sinpix = 1
einpix = 25
sinlin = 1
einlin = 11
limits of image map
soupix = 1872
eoupix = 2010
soulin = 1796
eoulin = 1810
size = 2430 \times 1810
1 26 1 12
Normal Completion!
```

Name

modInfo -- query information about a MODIS Level-1B file

modInfo

modInfo [option] modFile

Description

This program is used to dump information about a MODIS data file. With no options the program will print out a series of parameters. A single parameter can obtained using a selected option. The options are succint as they were designed with shell scripting in mind.

Options

-year	4-digit year of input file.
-doy	3-digit day of year of input file.
-month	3-character month of input file. Months are 'jan', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec'
-time	6-digit time (HHMMSS) of input file.
-hour	2-digit hour (HHMMSS) of input file.
-min	2-digit min (MM) of input file.
-sec	2-digit second (SS) of input file.
-start_time	start time of input file.
-end_time	end time of input file.
-platform	Platform of MODIS file (1=Terra, 2=Aqua)
-version	Major component of PGE version of file.
version	Print out version and exit.

Examples

Here is how a Bourne shell script function might use **modInfo** to set the name of the output files from the input file:

```
set_name()
{
   yr='modInfo -year $1'
   jday='modInfo -doy $1'
   time='modInfo -time $1'
   file=MODAM$yr$jday$time.L1A
}
```